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Rational Ruled Surfaces Passing
Through Two Fixed Lines

Gueorgui H. Gueorguiev

Abstract. For any positive integer n, a rational ruled surface of degree
n + 1 is constructed which passes through two arbitrary skew lines in the
three-dimensional Euclidean space. In the cases of two parallel or inter-
secting lines, a rational ruled surface of degree 2n + 1 is constucted which
contains the lines. Any surface is a preimage of a plane under a bira-
tional space transformation. This interpretation gives implicit equations
and parametric representations of the considered surfaces.

§1. Introduction

Ruled surfaces play an important role in computer aided geometric design (see
[2,5,6]). In this paper, we construct rational ruled surfaces which are general-
izations of the hyperbolic paraboloid and the hyperboloid of one sheet. Our
main results describe three families of ruled surfaces which pass through two
skew lines, two parallel lines, and two intersecting lines. The resulting surfaces
in three-dimensional Euclidean space R3 (especially their parts without singu-
larities) can be used in engineering and manufacturing. These ruled surfaces
are found by the use of some birational transformations of ll31. This inter-
pretation also provides a way for finding an implicit equation and parametric
representation of any such surface.

The paper is organized as follows. We introduce special birational trans-
formations of the projective space p 3 in Section 2. Any transformation
determines a three-parameter family of surfaces whose images are planes.
Corresponding transformations and rational surfaces in ]R3 are described
in Section 3. For any positive integer n, a rational ruled surface of degree
n + 1 is constructed which passes through two arbitrary skew lines in the next
section. The rational ruled surfaces of odd degree passing through two parallel
or intersecting lines are considered in the last two sections.
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§2. Birational Transformations of the Projective 3-Space

Any rational surface is birational equivalent to a plane. In particular, the
preimage of a plane under a birational space transformation is a rational
surface. In this section, we shall consider birational transformations such that
the preimage of an arbitrary plane is a rational ruled surface. First, we briefly
recall some basic notions for birational transformations.

Definition 1. Let p 3 be the three-dimensional complex projective space.
The map ofF 3 into itself

T : p
3 , p3

is called a birational transformation if there exists an open subset U C ]P3 in
the Zariski topology such that the restriction TIu : U --+ U is a one-to-one
correspondence.

In terms of homogeneous coordinates, the map T is birational, if

i) T is given by the equations

P'Xf = F'(Xo, X1, X 2 , X 3 ), i = 0, 1, 2, 3, (1)

where F"' are homogeneous polynomials of the same degree and p' is a
nonzero factor of proportionality;

ii) The inverse map T-1 exists and is given by the equations

P Ixf• = Fi"(Xo, X 1 , X 2 , X 3 ), i = 0, 1, 2,3, (2)

where Fi' are also homogeneous polynomials of the same degree
and p" : 0.

In (1) and (2), the quadruples (Xo,X 1 ,X 2 ,X 3), (X6, X1, X2,X3) and
(X1', X1', X2', X3) are homogeneous coordinates of the points q E ]P3 , q' =
T(q) and q" = T-l(q), respectively. Moreover, it is possible that degF.'
degFi".

A fundamental (or base) locus of the birational transformation T given
by (1) is the variety of common zeros of the polynomials Fl'. There is a three-
parameter family of rational surfaces such that the image of any surface under
T is a plane. Then, the intersection of all such surfaces is the fundamental
locus of T. Note that the birational transformations of the projective space
are also called Cremona transformations. More information for the birational
transformarions can be found in [1] and [4].

Now, we shall study a class of birational space transformations. For any
three fixed numbers 01 E C \ {0}, 02 E C \ {0} and 0 E C \ {0, 1}, and for
any positive integer n, we may consider the map To : p 3 __ ]p3 given by the
equations

PX =(1X - 02Xn)Xo,

AX• =(0 1 X• -Xn 2 X)Xl - (1 - 0)0 1 (XlX' -( X2X3),PX I= Xn (~ n _ Xn), (3)
pX• =(01 X( - 02X-)X 2 - (1 - 0)0 2 (XiX6 - X 2X'),

pX' =( 1 Xon - 02X3)X 3 .

From the condition 0 5 1, it follows that To is not the identity mapping.
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Theorem 1. The map To is a birational transformation, and the reducible
curve 01X0z - 0Xn = o

B XIXon - X2XL = 0

is the fundamental locus of To.

Proof: Let C be the surface given by the equation 91Xo - 0 2X3 = 0. Then,
the map To is a one-to-one correspondence in the set P 3 \ C which is open in
the Zariski topology. On the other hand, the inverse mapping To7' is defined
by the equations (3) in which 0 is replaced by 0-1. Thus, To is birational. The
curve B is the set in which To is not defined. Hence, B is the fundamental
locus of To. E

The linear transformations of pn (n = 1, 2, 3) and their invariant, a
cross-ratio, are studied in detail in [7]. Some geometric properties of the
nonlinear transformation To can be described in terms of a cross-ratio and
collineations. The line S03 C p 3 given by X0 = X3 = 0 is the n-fold line
of the ruled surface G given by the equation X1 Xo - X 2Xn = 0. Let c be
the point with homogeneous coordinates (0, 01, 02, 0). Then, for any point
q E 1p3 \ C, the joining line Zqq meets G at the second point qO 5 c. From here,
the point q' = To(q) lies on the line Tqq, and the cross-ratio {c, q0 ; q, q'} = .
Continuing in this way, we consider a plane P given by AoX 0 + A3X 3 = 0,
where (Ao, A3) E C2 \ {(0, 0)} and An : A• n 01 : 02. Then, the intersection
P n G falls into n-fold line S03 and another line H not containing the point
c. From the equations (3), we may conclude that To preserves P and the
restriction To0 p : P -+ P is a plane homology with a vertex c, an axis H and
a modulus 9. It is clear that the set of all fixed points of To is G \ B.

Theorem 2. Let V be a surface in p 3 such that the image To(V) is a plane.
Then, V is a rational ruled surface of degree n + 1. In the case n > 2, the
singular locus of V is an n-fold line S03.

Proof: From the (3) it follows that the surface V is given as the locus of

3

(91Xo - 0 2X3)(5 AiXi) - (1 - 0)(A1 01 + A2 02 )(X 1 Xo' - X 2 Xn) = 0, (4)
i=O

where Ai E C for i = 0,1,2,3 and i=0 IAI A 0. Hence, degV = n+ 1. By
(4), if P is a plane through the line S03, then the intersection P n V falls into
the n-fold line S03 and another line L. This means that V is a ruled surface.
It is known from [3] that the singular locus of a ruled surface is connected.
Thus, Sing(V) = S03. El

§3. Birational Transformations of the Euclidean 3-Space

Suppose that 01, 02 and 9 are nonzero real numbers. Then, by (3), this
defines a birational transformation of the 3-dimensional real projective space,
or equivalently, a birational transformation of the projective extension of the
Euclidean 3-space. Thus, we get a birational transformation of the Euclidean
3-space.
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Theorem 3. Let n be a positive integer, 01 and 02 be positive real numbers,
and let 0 E R \ {0, 1}. Then, the transformation T 1 : R 3 __- R 3 given by the
equations in Cartesian coordinates

X' = {(01 - 02 z')x - (1 - 0)0I(x - Yz')}(0i - 02z')-1,

Y' = {(01 - 02 zn)y - (1 - 0) 0 2(X - yzn)}(01 - 02 z)- 1 , (5)

Z = Z,

is birational. If V is a surface in iR3 and the image T2(V) is a plane, then V
is a rational ruled surface of degree n + 1, and there is an unique generatrix
of V in any plane Pt given by the equation z - t = 0 (t C IR).

Proof: Substituting X 1Xo 1 
= x, X2Xo1 = y and X3 Xo1 = z (into the

equations (3)), we obtain (5). Then, the statements follow from Theorem 1
and Theorem 2. L3

The inverse transformation T1-' is defined by (5), where 0 is replaced by
01. Hence, both T1 and TT1- are not defined at the points of the reducible
surface given by the equation 01 - 02z' = 0. Any surface V contains the
reducible curve B 1 given by 01 - 0 2z' = x - yz" = 0 which is the fundamental
locus of T1. If two lines are components of the curve B 1, then there is a
family of rational ruled surfaces V passing through the lines. We shall use
this property in the next sections.

Definition 2. We say that the type of the surface V C R 3 is HtPn+i if its
transform TI (V) is a plane.

It is clear that in the case n = 1, V is a hyperbolic paraboloid.

§4. Skew Lines

In this section we fix two skew lines L1 and L2 in the Euclidean space R3. Let
V be the angle between the lines L1 and L2, and let d be the distance between
the same lines. Without loss of generality, we suppose that 0 < V <_ and
tan V z dn. The mutual position of L 1 and L2 is completely determined by O
and d.

Theorem 4. For any positive integer n, there exists a two-parameter family
of rational ruled surfaces which meet the following requirements:

i) The type of any surface is 7'Pn+l,

ii) Any surface passes through L 1 and L 2.

Proof. Let (x, y, z) be Cartesian coordinates in 1R3. Then, we may assume
that

L, z d 0 and L2 :
x -- dny =0 kx - y + 1 -- 0,

where k = d csinW+cosV Consider the birational transformation T1 defined by

(3) in which 01 = d' and 02 = 1. If the surface V C R3 is given as locus of
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(dn - z)(Ao + AlX + A2 y + A3 z) -(1- 0)(Aid' + A 2)(x- yzn) = 0, (6)

where Ai E R (i = 0,1,2,3) and E3 0 1oAiA 1 0, then the image T1 (V) is a
plane. Let Ao = 1, Al = k0- 1 + (1- 0-1)d-n, A2 = -1, and A3 = bt E R.
Thus, we obtain a 2-parameter family of rational ruled surfaces V(9, it) given
by

(dn - zn){1 + (0-1k + )x - y + ±Az}

+ (1 - 0-1)(dnk - 1)(x - yzn) = 0.

The pencil of lines on V(9, M) can be represented as L(t) = Pt n Qt (t E IR),
where the plane Pt is given by z - t = 0 and the plane Qt is given by

(d n• _ tn){X + (0- 'k + 1 - )1x - y + It}l
dn )x-±t

+ (1 - 0-1)(dnk - 1)(x - ytn) = 0.

Then, L, = L(t = d) and L2 = L(t = 0). 0
Now, we can obtain a parametric representations of the above surfaces.

If 0 $ 0, 1 and pt are fixed real numbers, then the parametric equations of the
surface V(9, /z) are

fi (u, t)
x~u Y-gi(t) z~t,

where u and t are real parameters,

fl(u,t) = (td - dn){1 + (0-1 k + d - 0-1 d-n)u + Att}

+ (1 - 0-1)(1 - kdn)u

g1(t) = tn - dn + (1- 0-1)(1 - kdn)tn.

§5. Parallel Lines

Using the birational transformations defined in Section 3, we can construct
noncylindrical rational ruled surfaces of odd degree which pass through two
fixed parallel lines.

Theorem 5. Let L, and L2 be two parallel lines in the Euclidean space
JR3. Then, for any positive integer m, there exists a four-parameter family of
rational ruled surfaces which meet the following requirements:

i) The type of any surface is 7"LP2m+1;
ii) Any surface passes through L, and L2.

Proof. Let 2d be the distance between L, and L2. Then, we may suppose
that

L1  z + (-1)jd =0
z - d2my 0, =1,2.
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Consider the transformation T1 given by the equations (3), in which
01 = d2", 2 = 1 and n = 2m. If V C ] 3 is a surface such that
the image TI(V) is a plane, then V is given as locus of

(d 2m - z2m)(A0 + A,1 x + A2 Y + A3 Z) - (1 - 0)(A1 d
2 , + A 2 )(x - yZ 2

m) = 0,

where A• E IR and _i=0 IAil 5 0. For t E R, let Pt be the plane given by the
equation z - t = 0 and Qt be the plane given by the equation

(d 2 m - t 2 m)(A0 + A, x + A2 Y + \ 3 t) - (1 - 0)(A1 d
2 - + A2 )(x - yt 2m) = 0.

Then the one-parameter family of lines L(t) = Pt n Qt C V contains the lines
Li = L(t = d) and L2 = L(t = -d). 0

The above description of the generatrices of the surface V also gives its
parametric equations

x =u,

(t 2- - d2m)(A 0 + A1 u + A3 t) + (1 - 0)(A1 d
2 - + A2 )u

= - A2 (d 2 - - t
2
m) + (1 - 0)(A1 d

2 m + A2 ) t2m

z =t,

where u and t are real parameters.
Finally, we observe a special property of the surface V E -'P2m+1. From

the proof of Theorem 5, it follows that the lines L(t) and L(-t) are parallel
for any t $ 0. Moreover, if t1 : t 2 and tj :A -t 2 , then L(tj) and L(t 2 )
are skew lines. In other words, the rational ruled surface V E HP2m+l is
noncylindrical.

§6. Intersecting Lines

First, we consider another interpretation in R 3 of the birational transforma-
tion To. Next, using this interpretation, we construct a four-parameter family
of nonconic rational ruled surfaces which pass through two fixed intersecting
lines.

Theorem 6. Let 7P be an acute angle, and let T2 : R 3 _+ ]R3 be the trans-
formation given by the equations

X= x{h(x,y) - zn} - (1 - 9){xh(x,y) - yzn}

h(x,y) - zn- vr2(1 - 9){xh(x,y) - yzn}tan 0

y= y{h(x,y) -zn - (1 - 0){xh(x,y) - yzn}
h(x, y) - zn- vr(1 - 0){xh(x, y) - yzn}tan (7)

z/ = z{h(x,y) - zn}
h(x,y) - zn- V-2(1 - 9){xh(x,y) - yzn}tano'

where 0 E R\{0,1} and h(x,y) ={1- _an(X+y)}n. Then, T2 is bira-

tional. If W c R•3 is a surface such that the image T2 (W) is a plane, then W



Rational Ruled Surfaces 133

is a rational ruled surface of degree n + 1, and the singular locus of W is the
n-fold line

z -0S : I -/2 =0"S:X+y_ ta.nP

Proof: Substituting into (3) 01 = 02 = 1, o x x tanO
XX _ ytXn fX-

Xo+y+tan- -n-3 z, we get (7). Thus, the statement fol-
XO+X 1+X2 f2 ,' XO+X 1+X2lows from Theorem 1 and Theorem 2. E

Definition 3. We say that the type of a surface W C R 3 is 7'OSn+l, if the
transform T2 (W) is a plane.

Note that in the case n = 1, W is a hyperboloid of one sheet.

Theorem 7. Let L1 and L2 be two intersecting lines in R3 , and let m is
a positive integer. Then, there is a four-parameter family of rational ruled
surfaces such that the type of any surface is "OiS2mnq+1 and any surface passes
through L1 and L2.

Proof: Let 20 be the angle between L1 and L2 . Then, we may suppose that
(x-y =0
L (x+y)tan ±+(-1)j+'/ "z- i- =0 1,2.

Consider the transformation T2 given by the equation (7) in which n = 2m.
If W C R3 is a surface and the image T2(W) is a plane, then W is given by

(AO + Al x + A2 Y + A3 z){h(x,y) - z(}

- (1 - 0)(v/2Ao tanV- + A1 + A2 ){xh(x,y) - yzn} = 0,

where Ai E R, E3 0 1Aid I 0. Let Pt (t E IR), be a plane given by

tan 4'1 t- V(x +y) =0 
(9)

and let Qt (t e R) be a plane given by

(Ao + A,1 x + A2 y + A3 t)(1 -t2r)

- (1 - 0)(vfAo tan 0 + A, + A2 ){x - yt 2 m} = 0.

Then, the line L(t) = PF fl Qt lies on W for any t E ]R. It is easy to see
that L1 = L(t = 1) and L 2 = L(t = -1). Hence, W is a ruled surface which
contains L 1 and L 2. [
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Equation (8) with the additional conditions x < 0 and y _• 0 determines
a domain on the surface W which is smooth and without singularities. Other
properties of W follow from (9) and (10). The line L(t) intersects the line
L(-t) at a point on n-fold line S for any t E IR\ {0}. If ti $ t 2 and t, : -t2,

then L(t 1 ) and L(t 2) are skew lines. This means that W is a nonconical
surface.

Finally, the parametric representation of the ruled surface W is

f 2 (ut tank f2(u, t)),

92- (t) 2 9g2(t)

where u and t are real parameters, and

f(u, t) = (1 - 0)(vf2 tan 'A0 + A,1 + A2 ) - (A0 + A•1 u + 3 t)(1 _ t23 ),

g2(t) = (1 - 0)(V2-tan 4Ao + A, + A2)t 2
- + A2 (1 - t2ý).

Using the general properties of the birational transformations, we get the
implicit equations of the surfaces in the last three sections. But to find the
parametric representations of these surfaces, we apply the specific properties
of the transformations T1 and T2.
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